B. Tech IV Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19AEE76c- HYBRID ELECTRIC VEHICLES

(Professional Elective-IV)

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- Understand working of different configurations of electric vehicles
- Understand hybrid vehicle configuration and its components, performance analysis
- Understand the properties of batteries and its types.
- Understand of electric vehicle drive systems.
- Understand of hybrid electric vehicles.

UNIT – I: Introduction to Electric Vehicles

Sustainable Transportation - EV System - EV Advantages - Vehicle Mechanics - Performance of EVs - Electric Vehicle drive train - EV Transmission Configurations and Components-Tractive Effort in Normal Driving - Energy Consumption - EV Market - Types of Electric Vehicle in Use Today - Electric Vehicles for the Future.

Learning Outcomes:

At the end of this unit, the student will be able to

•	Learn about the fundamentals of EV system	L1
•	Learn about the vehicle mechanics and its performance	L1
•	Learn about the advantages over conventional vehicles	L2
•	Learn about the types of Electric Vehicles	L4
•	Learn about the future scope of these vehicles	L5

UNIT – II: Electric Vehicle Modeling

Rolling Resistance - Transmission Efficiency -Consideration of Vehicle Mass - Tractive Effort - Modeling Vehicle Acceleration - Modeling Electric Vehicle Range -Aerodynamic Considerations - Ideal Gearbox Steady State Model - EV Motor Sizing - General Issues in Design.

Learning Outcomes:

At the end of this unit, the student will be able to

•	Learn about the electric vehicle modeling like rolling resistance, efficiency	L1
•	Learn about the tractive effort developed by the EV	L2
•	Learn about the Modeling of Electric Vehicle Range	L3
•	Learn about the considerations of aerodynamic in EV design	L4
•	Learn about the EV motor sizing with general issues considerations	L5

UNIT – III: Batteries

Introduction to electric vehicle batteries - electric vehicle battery efficiency - electric vehicle battery capacity - electric vehicle battery charging - electric vehicle battery discharging - electric vehicle battery performance – testing.

Learning Outcomes:

At the end of this unit, the student will be able to

•	Learn about the introduction of batteries related to the EVs	L1
•	Learn about the EVs battery performance details	L2
•	Learn about the testing of batteries for EVs	L3

UNIT – IV: Hybrid Electric Vehicles

HEV Fundamentals -Architectures of HEVs- Interdisciplinary Nature of HEVs - State of the Art of HEVs - Advantages and Disadvantages - Challenges and Key Technology of HEVs - Concept of Hybridization of the Automobile-Plug-in Hybrid Electric Vehicles - Design and Control Principles of Plug-In Hybrid Electric Vehicles - Fuel Cell Hybrid Electric Drive Train Design - HEV Applications for Military Vehicles.

